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UNUSUAL TERMS

Processor - A major S4 program entity designed to accomplish a specific

software task. A processor may be added to S4 without

major impact on the system.

General Purpose Assembler - An S4 processor constructed to accept a

set of SUMC target computer design definition parameters

with corollary SUMC mnemonic commands. These inputs

are translated by the General Purpose Assembler into an

intermediate level output which is processed to produce

SUMC object code.

NONSTANDARD ABBREVIATIONS

IL Intermediate Language

S4 SUMC Support Software System

SUMC Space Ultrareliable Modular Computer

VSD Vector Symbol Dictionary
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TECHNICAL MEMORANDUM X-64878

SYSTEM SUPPORT SOFTWARE FOR THE SPACE
ULTRARELIABLE MODULAR COMPUTER (SUMC)

SUMMARY

The Space Ultrareliable Modular Computer (SUMC) Software Support

System was designed and implemented to support the SUMC operational

hardware. This support software system is written primarily in Standard

FORTRAN IV and is highly portable from one host computer system to

another.

The software is constructed in program units called processors.
The controller processor, called the S4 Supervisor, communicates with

the host computer operating system and manages the execution of sub-
ordinate S4 processors such as assemblers, compilers, and linkage
editors. Host computer dependencies, such as word size, are coded as

parameters in the S4 Supervisor data tables. Processors executing
under control of the S4 Supervisor utilize these tables to mask host com-
puter dependencies. This concentration of the host computer design

parameters in the S4 Supervisor data tables facilitates modification in
the transfer to a different host computer system. The remaining host
dependencies are masked by utilization of a few subroutines written in
host computer assembly language. S4 minimizes computer host depend-
ence and provides the SUMC software programmers the tools to develop
flight software for variable SUMC hardware architectures.



SECTION 1. INTRODUCTION

The S4 design concepts arose from efforts to provide a host com-

puter independent software system containing the processors necessary

for generation of software for the Space Ultrareliable Modular Computer

(SUMC).

The SUMC family is an emerging class of spaceborne computers

intended for missions during the 1974-1980 time frame. SUMC design

concepts emphasize four-bit incremental word length, microprogram-

mable instruction sets and expandable scratch pad and main memories.

Additionally, multiprocessor organizations are envisioned utilizing the

SUMC as the repeated computer module.(1) As a self-contained soft-

ware system, S4 supports the development of programs for the SUMC

family of computers. Reduction of software support development pro-

gramming effort is accomplished through the following S4 design goals:

o Maximizing S4 host computer independence and thereby

minimizing the effort required to transport S4 from one

host computer to a different host computer.

o Defining different SUMC target computers via parameteri-

zation.
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SECTION II. SUMC SUPPORT SOFTWARE SYSTEM (S4)
DESIGN CONCEPTS

S4 is designed to accelerate SUMC support software development

on a variety of host computers. The host transportability and capability

are accomplished by the following:

0 S4 is written primarily in ANSI FORTRAN IV with host
(2, 3)

dependent programming isolated in the supervisor.

o Host dependent parameters are input as system variables

and utilized to control processor execution in the current

host environment.

o S4 is constructed in a modular, open-ended form with the

supervisor controlling execution of processors such as

compilers, assemblers, linkage editors, and simulators.

o User file construction and maintenance are defined and

implemented for interfacing with the host I/ O.

For S4 implementation a minimum host hardware configuration is

required as shown in Table 1, Host Computer Configuration Requirements.

Most existing medium and large scale commercial and scientific com-

puter installations easily exceed the noted configuration requirements.

In addition to the host hardware requirements, certain host opera-

ting system capabilities are required:

o An overlay mechanism to load and execute user programs.

o Basic I/O handlers to support hardware requirements.

o Disc file management with random disc addressability of

declared contiguous disc space.

3



TABLE 1. HOST COMPUTER CONFIGURATION REQUIREMENTS

HOST COMPUTER CONFIGURATION SIZE PARAMETERS

CPU 1

MAIN STORAGE (User available) 64K WORDS

PRIMARY INPUT CARD READER

PRIMARY OUTPUT* CARD PUNCH

MAGNETIC TAPE UNITS 3 LOGICAL UNITS

DISK APPLICATION DEPENDENT
( I O-x 107 WORDS)

*PAPER TAPE PUNCH MAY BE UTILIZED IF REQUIRED BY THE TARGET COMPUTER



In the following sections, the S4 functional design will be presented.

The initial set of S4 processors is described in the Software Description

(Section III). Ensuing sections of this report are devoted to a descrip-

tion of the design of the processors that comprise the initial S4:

o S4 Supervisor.

o FORTRAN Cross Compiler.

o Cross Assemblers.

o Linkage Editors.

o Simulator.

o Microcode Grid Print.

5



SECTION III. SOFTWARE DESCRIPTION

A. General

The S4 processors are constructed as an open-ended collection and

designed to provide the user with the capability to generate SUMC soft-

ware. The initial S4 system, noted in Figure 1, is made up of the

following software support processors:

o S4 Supervisor.

o FORTRAN Cross Compiler.

o Cross Assemblers.

- Instruction Assembler

- Microcode Assembler

o Linkage Editors.

- Instruction Linkage Editor

- Microcode Linkage Editor

o Simulator.

- Instruction Level Simulator

o Target Output Converters.

- Instruction Load Module Converters

= Microcode Load Module Converters

o Microcode Grid Print

Figure 2 describes the interrelationship of the S4 processors. It

demonstrates the possible processor control and data flows necessary

to generate SUMC target load modules. Choice(s) among the possible

paths is controlled by the supervisor via the S4 control language

(Section III. B. 2). Source modules can,be translated and/ or saved in a

user external file. Compiler output is in a format acceptable to the

6
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Instruction Assembler, which in turn produces relocatable object

modules acceptable to the Linkage Editor. A load module which is

generated by the Instruction Linkage Editor can then be used as input

by the Simulator. A SUMC target module can be generated by the

Target Output Converter from an object module or a load module.

Microcode processing follows a slightly different procedure since the

output requirements for microcode differ from the requirements for

instruction level output. Output maps for microcode are needed to

assist the microcode programmer's verification of the microcode.

These differences are supported by the appropriate processors: (e. g.,

Microcode Assembler, Microcode Linkage Editor, and Microcode Grid

Print).

B. S4 Supervisor

1. General. The S4 Resident Supervisor is made up of the com-

ponents indicated in Table 2. The main purposes for this particular

organization are:

o Localize and minimize the problem of transportability

from host to host by isolating most dependencies into a

single processor; (these host dependencies include all

assembly language programming).

o Provide overlay control.

o Provide a dynamic S4 system communications area.

The S4 Non-Resident Supervisor is a processor that executes under

control of the S4 Resident Supervisor.

9



TABLE 2. S4 RESIDENT SUPERVISOR FUNCTIONS

DESCRIPTION PURPOSE

Host Dependent Subroutines Centralize all Assembly
Language Host Dependent
Subroutines.

S4 System FORTRAN Eliminate Redundancy and

Subroutines Centralize Routines Common

to All Processors.

Common Data and Tables Make System Data Available

to all Processors.

Overlay Control Control the Execution of

Processors via Overlay.

S4 System Communication Supervisor-- Processor

Area Communications
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The Non-Resident Supervisor's main purposes are:

o Provide Control Card interpretation.

o Communicate data to the Resident Supervisor for Processor

Control.

o Provide file maintenance for the applications programmer.

o Provide utilities (e.g. listing, mapping, punching cards, etc.)

The present S4 design includes the following user functions:

o Compilation - A FORTRAN Cross Compiler permits trans-

lation of -ANSI FORTRAN IV language (with extensions) to

an intermediate language for eventual processing and execu-

tion on a SUMC. The cross compiler will be discussed in

detail in Section III. C .

o Assembling - Cross Assemblers translate mnemonic state-

ments to an intermediate language for eventual processing

and execution on a SUMC. Assemblers provide capability

to translate instruction level and microcode level commands.

The assemblers will be discussed in Section III. D.

o Simulation - Host independent simulation of a target com-

puter is available at the instruction level. The simulator

provides several dumps, traces and maps designed to

expedite software debugging for the SUMC. A description

of the simulation process is provided in Section III. F.

o Linkage Editing - S4 gives the user the capability to link

relocatable object modules to form load modules. Load

modules can be a combination of library and user object

modules. A description of the linking process is provided

in Section III. E.

ii



o SUMC Target Output Converting - Reformats a load module

or object module to make it acceptable to a particular target

SUMC loader. A unique Target Output Converter will prob-

ably be required for each different SUMC target computer.

o Line Editing - Facility for editing source modules on a

line image basis. Replace, Insert, and Delete capabilities

are provided.

o File Mapping - Contents of files can be displayed by re-

quest of the user.

o User Modification History Maintenance - A modification

history is maintained as a part of the user files. This

modification history is available to the user at any time.

2. Functional Description of the S4 Supervisor

a. Resident Supervisor. The Resident Supervisor is entered

from the Host Operating system and executes the S4 System Initialization

as indicated in Figure 3. When initialization is completed, the Resident

Supervisor summons the Non-Resident Supervisor and passes control

to it. The Non-Resident Supervisor reads and interprets an S4

control statement. A Processor Control Code is generated in the sys-

tems communication area. Control is then returned to the Resident

Supervisor. The Resident Supervisor then summons the requisite

processor overlay. Upon completion of execution of the requested

Processor, control is returned to the Resident Supervisor. The Resident

Supervisor then summons the Non-Resident Supervisor and passes control

to it. This process continues until control is returned to the host opera-

ting system.

12
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b. Non-Resident Supervisor. The Non-Resident Supervisor

is an open-ended processor which reads, interprets and executes or

directs execution of the specified control statement function. A single

control statement directs the Non-Resident Supervisor to perform one

of the following:

o Execute a processor (e.g. Assembler, FORTRAN IV

Compiler, Linkage Editor, etc.).

o Perform maintenance or mapping on a user file.

A user file is a collection of basic building blocks called user modules.

A particular file or a module is identified by name. In addition, modules

are identified by module type. A modification history is maintained at

both the file and module levels. The user has freedom to construct an

output file to include any modules that have been input or generated by

the system. This freedom provides the user with the flexibility required

in the generation and maintenance of programs for a SUMC computer.

These user facilities may be further described as follows:

o User File Processing - Provides capability of inputting

multiple user external files, thus creating an internal file.

A user may output the internal file at any time during the

job run. This will generate a new user external file con-

taining all modules in the internal file at time of output.

File mapping is available and provides listings of the

module names and the characteristics of the modules in

the internal file.

o User Module Processing - Module utility functions are

provided. Modules can be altered, listed or output to ex-

ternal devices. Alteration may include adding a module,

14



or line editing a module. A modification history of

module alterations is maintained. The modification

history can also be altered or deleted.

C. S4 FORTRAN Cross Compiler

1. General. The FORTRAN cross compiler is designed to trans-

late input statements conforming to standards proposed by the X3. 9

FORTRAN Group of the American National Standards Institute (ANSI).

Minor extensions are planned to expand the compiler capability without

impacting the transportability afforded by standardization.

2. Compiler Organization. The compiler organization is systema-

tized as shown in Figure 4. The two major sections are called:

o Functional elements.

o Procedural elements.

The functional elements of the compiler are classified by the sequential

control flow and are given in the large rectangular area of Figure 4

circumscribed by the dashed lines. Functional elements execute in

several levels of control indicated by the simple tree structure.

In contrast, procedural elements are subprograms designed by

collecting common operations present in the functional elements. A

procedural element interface is constrained merely by its calling

sequence. Within a procedural element the compiler designer is free

to choose an algorithm without impacting design requirements of

other elements.

15
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The Phase Controller coordinates the execution of the functional

elements which are divided into four phases and provides a single

point interface for the Resident Supervisor. These phases are described

below:

a. Phase 1. Comprises the source language statement

transformations listed below:

(1) Lexical Analysis. The lexical analyzer performs the

following functions:

o Input source statements.

o Print source statements.

o Verify column alignment.

o Determine statement type.

o Combine symbols, numbers, and key words into single

tokens for the syntax analyzer.

(Z) Syntax Analysis. The syntax analyzer recognizes

valid FORTRAN statements and displays error messages for the

invalid statements.

(3) Synthesis. The synthesizer translates the source

statements into an abstract syntax consisting of three elements:

o Data Definition Tables - Derived partly from specification

statements, and partly from variable usage in executable

statements.

o Control Structure - Division of the program into basic

blocks, each with single entry and exit, delimited by

control altering statements.

o Compiler Intermediate Language - A division of expres-

sions and control statements into more atomic elements

(triples) that maintain the original semantics.

17



In addition, commands associated with the compiler validation

package will be interpreted, the associated control tables built, and

local optimization performed.

b. Phase 2. Allocation is a target computer dependent

activity that includes:

o Determining relative offsets for equivalenced data items.

o Aligning data types and address boundaries commensurate

with the requirements of the target computer instruction

set.

o Sectioning the data area into regions and assigning base

registers.

c. Phase 3. Global optimizations performed in Phase 3 are

types that are language dependent and target computer independent. An

attempt has been made to isolate optimization to permit the analysis to

be optional.

The optimizer will make one backward pass over the Intermediate

Language (IL), analyzing basic blocks and loops. Analysis of blocks

will entail:

o Range of Variables and Definitions - Attaching to each

simple variable reference the triple address of the next

IL statement in which the variable appears, and the next

redefinition address.

o Constant Propagation - The evaluation of expressions con-

taining variables with values known at compile time.

o Redundant Expressions - The factoring of common arith-

metic expressions occurring over consecutive statements.

18



o Assignment Statement Permutation - Relocating assign-

ment statements which may be encoded as part of a sub-

sequent statement.

Although loops consist of several basic blocks, their predominant

relationships can be discerned without extensive graph analysis.

Therefore, a loop optimization is performed over multi-block regions.

Two strategies will be applicable:

o Invariant Expressions - Forming a loop prologue composed

of expressions for which the operand values are not changed

within the loop.

o Operator Strength Reduction - Transposing multiplications

involving inductive variables into a series of additions that

can be performed optimally by incrementing index registers.

d. Phase 4. The code generation phase makes one forward

pass over the Intermediate Language (IL), generating assembly

language code for each triple not deleted in Phase 3. A subsequent

pass over the allocation tables generates code representing the program's

data structure.

Use of assembly language output rather than target machine code

reduces the size of Phase 4 and more easily accommodates minor

changes in the target computer instruction set.

The procedural elements of the FORTRAN Cross Compiler are

noted in the lower portion of Figure 4 and are described in greater detail

below:

19



a. Resident Table Manager. A number of compile time

tables (symbols, constants, etc.) occupy a single storage area. The

location and specific structure of these tables are hidden from other

elements which may manipulate them only through the resident table

manager. In this manner, overflow and storage reapportioning can be

localized.

b. Non-Resident Table Manager. The Non-Resident Table

Manager permits internal tables that overflow resident storage to be

saved on mass storage for subsequent reference. This element localizes

the interface to the supervisor's auxiliary storage service and enforces

a uniform access procedure for the non-resident tables.

c. Intermediate Language (IL) Manager. The IL Manager

consists of an additional internal table with associated manipulative

functions. The IL manager translates higher level functions into the

more primitive functions of the resident table manager.

d. Error Message Depository. A centralized routine constructs

error messages for printing and appends the severity level.

e. Line Record Formatter. A number of different line printer

record types are necessary. This element permits the combination of

common functions, such as number base conversion and spacing.

f. Validation Package (Debug). Facilities are available to:

o Trace the syntactic decomposition of source statements.

o Trace selected routine calls within the compiler.

o Dump table contents in a symbolic format at selected

execution points.

20



These tools enable the analysis of the compiler's operation on

quite complex source programs early in the development phase.

Otherwise the code generator would have to be operative before inter-

mediate results could be verified for other than the most simple test

case. The result of this earlier identification of logic errors greatly

improves reliability of the final product. The Debug package should be

permanently maintained with the compiler to ease future modifications

resulting from changes in the host, target, or language.

g. Code Selection Primitives. This element is included

among the procedural elements since it is desirable, on grounds of

reduced effort required for modification, to separate it from the func-

tional elements. The purpose of Code Selection Primitives is to

receive calls from functional elements representing generic target

computer operations and to translate these calls to the best of several

instruction combinations.

h. Object Record Formatter. The purpose of this element

is to construct object records in correct assembly language format and

construct a source library element according to the supervisor standards.

i. Arithmetic Package. Since values originally obtained

from the source statements enter into calculations (array offsets,

equivalencing, constant propagation, etc.), it is convenient to save

them in a binary format so they may be acted upon directly. The pur-

pose of the Arithmetic Package is to perform the conversion of these

values to a character form acceptable to the assembler.

21



D. S4 Cross Assemblers

1. Introduction. S4 Cross Assemblers process mnemonics repre-

senting SUMC instructions or predefined collections of computer instruc-

tions called macros. Cross assembler implies the execution of the S4

assembler on a host computer to generate machine instructions for a

possibly different target computer.

The S4 Cross Assemblers are parameterized general assemblers.

The S4 Cross Assemblers provide code generation capability for a wide

range of SUMC target computers.

2. Instruction Assembler. This section identifies and summarizes

the major characteristics of the S4 Instruction Assembler.

a. SUMC Word Length Independence. A fundamental design

characteristic of the SUMC is a main memory word length that is expand-

able in four-bit increments. Consequently, the assembler word length

is capable of specification in a corresponding manner.

b. SUMC Instruction Independence. The other fundamental

design characteristics of the SUMC are:

o Variable definition of main memory word subfields.

o Target memory size specification.

c. SUMC Data Independence. The assembler permits defini-

tion of memory word length and decodable subfields for a SUMC target

computer. The definable data formats are:

o Byte, half-word, word and double word.

o Fixed point, floating point and character.

22



d. SUMC Addressing Independence. The S4 Assembler

permits definition of all types of addressing. These types are:

o Immediate.

o Direct.

o Indirect.

o Relative.

o Indexed.

e. SUMC Character Translation. The SUMC target computer

graphic character set is defined to the assembler. Any graphic that is

not available on the host computer can be specified as a character constant.

f. System and Library Source Input. Assembler source input

may be of two types:

o User input.

o Library input.

User input shall be considered the standard medium for assembler

source statements. The assembler shall be capable of accepting and

including in the input stream additional assembly statements from a

source library.

g. Syntax Directed Parsing. A meta-linguistic, top-down,

tree-structured parsing algorithm has been adopted in the assembler.

It is anticipated that this approach makes the expansion of the assembler

language definition possible.

h. Macro Processing. The Assembler has the capability to

process and generate relocatable machine code for macro instructions.

23



i. Conditional Assembly. Often it is desirable to skip or

repeat the assembly of selected source input statements. The assembler,

therefore, includes conditional assembly instructions.

j. Assembler Expressions. Assembler expressions are con-

venient for the construction of program instructions and data. The

assembler is capable of computing expressions containing arithmetic

and logical operations.

k. External Symbols. It is often desired to subdivide a pro-

gram into separately assembled subprograms and subroutines. In order

to assemble these program sections separately and then combine them

for execution, the Assembler accepts definitions of symbols that are

external to (or local to) the current program section. Furthermore,

the assembler communicates these external symbols to the linkage

editor processor.

1. Program Relocation. Some programs (or sections of pro-

grams) require operation in fixed (absolute) locations in SUMC memory;

others may execute from any (relocatable) location. The assembler

is capable of differentiating relocatable instructions, addresses, and

data from non-relocatable instructions, addresses, and data. Furthermore,

the assembler communicates this program relocation information to the

linkage editor processor.

m. Error Analysis. Errors of syntax or semantics may be

present in the source input. Certain classes of assembly errors per-

tain to the improper designation or use of assembler instructions and

are implicitly discernible to the assembler. Other classes of errors

pertain to the construction and the intent of target defined machine

operations, macro operations and data.

24



3. Microcode Assembler. The Microcode Assembler is an exten-

sion of the Instruction Assembler, with additional capabilities not

required at the instruction level. This section identifies and summarizes

these additional capabilities.

a. Microcode Assembler Definition. The SUMC microcode

format does not lend itself to the separation of operations and operands.

Therefore, there is a set of control fields, each dedicated to the utili-

zation of a specific programmable hardware component. These control

fields contain both operation and operand characteristics. There is an

ordered and parallel action/ data flow within and between the hardware

units addressed by these fields.

The microcode assembler language allows the specification of all

control field settings. Instruction directives are defined which designate

actual field settings for a selected combination of one or more control

fields. A microcode assembler source statement is composed of one or

more directives which collectively describe the operational function of a

micro-instruction. This capability provides design flexibility through

open-ended microcode assembler instruction sets.

b. Instruction Assembler Extensions. The Instruction Assembler

extensions necessary for the Microcode Assembler are:

o Rescan Source Operand - Provides the capability to set

multiple fields based on an operand.

o Field default values - Default values can be specified for

those microcode fields not designated.

o Instruction Read Only Memory (IROM) data structure -

Allows the specification of the IROM data word structures.

o Additional object output - The generated IROM data is

output.
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E. S4 Linkage Editors

1. Instruction Linkage Editor.

a. General. The Instruction Linkage Editor is a processor in

the SUMC Support Software System. The linkage editor will receive inputs

from the S4 cross assembler in the form of relocatable object modules.

The linkage editor will interconnect these object modules to form a relo-

catable load module. The Instruction Linkage Editor provides an output

data stream. The output of the linkage editor is referred to as a relo-

catable load module and is a generalized format.

Since SUMC target computer loader characteristics may vary from

one application to the next, a target computer dependent conversion

routine is required for processing a linkage editor relocatable load

module. This routine called the " Target Output Converter" will refor-

mat the generalized output of the linkage editor to make it acceptable to

a particular target loader. The target output converter is dependent on

the target SUMC Loader and usually will have to be recoded for each

target SUMC Loader.

The Linkage Editor operation can be described in terms of its four

principal processing operations:

o Processing of Directives.

o Load module formation.

o Allocation of storage within a load module.

o Post Process mapping.

b. Processing of Directives. The linkage editor is activated

by an S4 LINK control statement. The S4 Supervisor processes this

control statement and then passes control to the linkage editor. The S4

LINK control statement includes a load module name and load module

entry point.
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To construct a load module, the user must supply a set of linkage

editor directives. The statements establish the name of at least one

object module for the load module. These linkage editor interpreted

directives include:

o INCLUDE Directive - Used to collect object modules. The

modules identified are included in the load module.

o ABS Directive - Sets the linkage editor location counter.

o END Directive - Used to indicate the end of a sequence of

linkage edit directives.

c. Load Module Formation. A search of the user internal file

is made for each object module that is named by the INCLUDE directives.

If not found in the user internal file, then the system file is searched.

Object modules not found in either file are undefined.

The entries in the internal and external label tables associated with

each object module are collected in the load module global symbol table.

A check is made to insure that all object module names in the load

module global symbol table are resolved. If an object module name has

not been resolved, then the same search procedure is followed for the

implicitly defined modules as for those modules that were explicitly

named on an INCLUDE directive. The checking and resolution procedure

is followed until an attempt is made to define all implicitly defined

modules. Those modules not resolved are noted as undefined.

d. Allocation of Storage. Object modules in a load module seg-

ment are processed in the order of their inclusion. Object modules

named by INCLUDE directives are processed, and then those implicitly

defined are processed. The first object module processed is assigned

a base address. Subsequent modules are assigned an address immediately

following the last address of the preceding module.
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e. Post Process Mapping. The object module names and the

characteristics of the modules are listed. The Global Symbol Table and

its characteristics are also listed.

2. Microcode Linkage Editor.

a. General. The Microcode Linkage Editor accepts relocatable

object modules which have been generated by the S4 microcode assembler

and performs the following functions:

o Links all external references to external definitions resolving

all relocatable addresses.

o Prints an absolute microcode assembler listing.

o Generates an output microcode load module.

The Microcode Linkage Editor operation can be described in terms of

the same principal processing functions outlined for the Instruction Linkage

Editor:

o Processing directives.

o Load module formation.

o Allocation of storage within a load module.

o Post Process Mapping.

The last three functions of the above list have been described in

paragraphs c., d., and e. of this chapter under Instruction Linkage

Editor; the description applies to the microcode linkage editor.

b. Processing of Directives. The Microcode Linkage Editor

is activated by an S4 MICLINK control statement. The S4 Supervisor pro-

cesses this statement and passes control to the micocode linkage editor.

The only information needed in the MICLINK control statement is a load

module name.

To construct a load module, the user must supply a set of microcode

linkage editor directives. These consist of:
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o ABS Directive - Controls the location of relocatable object

modules as they are linked. The location counter initial

value will default to zero.

o INCLUDE Directive - Collects all the named object modules

in the load module in the sequence specified.

o END Directive - Terminates the linkage editor process.

F. S4 Instruction Simulator

1. General. The function of the Instruction Simulator is to inter-

pretively execute a SUMC target load module. The load module will con-

sist of SUMC executable code in the form of a target computer memory

map. If the proper target computer architectural parameters have been

provided to the simulator by the user, the program code will be inter-

pretively executed by the simulator with all results being identical to

those which would be achieved by the target SUMC computer.

The output or results which can be obtained from the instruction

simulator include:

o The normal execution output of the SUMC program under

test.

o Debug and verification information generated by the

simulator diagnostics under control of user-supplied keys.

o Simulation error information generated by the simulator

in the event of an anomaly.

2. Functional Operation. The basic types of the simulation

processor modular construction is shown in Figure 5. These modules

and their functions are:
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SUMC

SUPERVISOR

SIMULATOR

MAINLINE ROUTINE

INITIALIZATION INSTRUCTION FETCH TERMINATION

SUB PROGRAMS AND EXECUTION SUB PROGRAMS
SUB PROGRAMS

DIAGNOSTIC INTERRUPT AND UTILITY

AND VERIFICATION ERROR CHECKING SUB PROGRAMS

SUB PROGRAMS SUB PROGRAMS

FIGURE 5. BASIC PROGRAM MODULES FOR SUMC INSTRUCTION SIMULATOR.



a. Simulator Mainline. The simulation process is carried

out under control of the mainline routine in three primary phases:

o Input of job description.

o Interpretive execution of target program.

o Termination of program.

b. Initialization. This set of program modules supervises

the input of all external data and the initialization of all internal simu-

lation parameters. The following data must be made available to the

simulator prior to execution:

o Values for target computer architectural parameters.

o Target computer memory map.

o Diagnostics keys and corresponding numerical data for

diagnostic control.

o Values for internal simulation parameters.

c. Instruction Fetch and Execute. The nucleus of the SUMC

Interpretive Simulator is made up of two subroutines which simulate the

instruction fetch and execute operations. The instruction fetch routine

performs the following functions:

o Validate instruction address.

o Fetch instruction from simulated SUMC main storage.

o Parse current instruction.

o Validate all operand addresses and fetch required data.

The instruction execution routine performs the following functions:

o Interpretively execute the current instruction.

o Validate simulated execution.
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o Place results in appropriate register in target computer

format.

o Update statistics.

d. Interrupt and Error Checking. This set of program modules

is responsible for simulation of the target computer interrupt detection,

interrupt stacking and interrupt servicing. The simulator checks for inter-

ruptions after each instruction interpretation is completed.

e. Diagnostics and Verification. The SUMC interpretive simu-

lator includes five types of diagnostic routines for simulated program

verification:

o SNAPSHOTS of selected target main memory locations.

o TRACE of contents of key target registers.

o DUMP of contents of scratch pad memory.

o BLOCK DUMP of selected portion of target main memory.

o FULL DUMP of target main memory.

User-supplied data is read by the program during the execution of

the initialization routines and serves to activate or deactivate each of

the above diagnostic aids. The diagnostics checking and processing are

performed after each instruction fetch but before instruction execution.

f. Termination Programs. This set of program modules is

used to control simulator operations following termination of target

program interpretive execution. Whenever possible, the termination

cause is identified and a table of program statistics is provided to the

user.

g. Utility Programs. The simulator also contains a number

of subroutines which perform generic operations and which may be used

by a number of different simulator modules. The great majority of

utility routines involve the execution of logical functions, bit manipula-

tion operations or data conversion.
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G. S4 Microcode Grid Print

1. General. The Microcode Grid Print processor enables the

user to generate a print of an MROM (microcode read only memory)

microcode load module. The user can specify the print format. It also

permits the microcode load module mapping of all global symbols (both

normal type and vector type) with their characteristics.

2. Processing of Directives. The microcode grid print is activated

by an S4 MICGRID control statement. The S4 Supervisor processes this

control statement and then passes control to the microcode grid print

processor. The S4 MICGRID control statement includes the microcode

load module name to be processed.

The user controls the grid print processor by the following directives:

o PMAP Directive - Directs the mapping of global symbols

in the microcode load module. All global symbols (both

normal type and vector type) are mapped along with their

characteristics.

o HEAD Directive - Permits the user to specify up to 3 lines

of headers at the top of page of the MROM grid print. If

no header directives are specified, blank headers are

printed.

o FIELD Directive - Establishes a print field format for the

MROM grid print. Bits from the MROM load module words

can be concatenated in any desired sequence into a print

field. A series of field directives (one for each print field)

control the MROM print line format.

o PROM Directive - Initiates the print of a microcode load

module MROM grid. The Head and Field directives
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specified previously control the format of the grid print.

The grid print can be specified as one of the following:

- Hexadecimal

- Complemented hexadecimal

- Binary

- Complemented binary

o END Directive - Indicates the end of microcode grid print.

Control is returned to the Supervisor.
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SECTION IV. CONCLUSIONS AND RECOMMENDATIONS

Major processors of the SUMC System Support Software (S4) have

been implemented in ANSI FORTRAN utilizing an XDS Sigma 5 as the

host computer. Software has been processed by S4 generating object

programs to execute on the SUMC target computer. Significant reduc-

tion of execution times for input/ output bound programs has been

accomplished using S4 input/ output when compared with FORTRAN

compiler 1/ O statements.

S4 is presently undergoing the modifications required for execution

on an IBM 360-65. Changes are necessary in the areas of the S4

Supervisor data tables and in the host dependent subroutines.

The ease in transfer of S4 from the XDS Sigma 5 to the IBM 360-65

will be one measure of the success of the S4 design approach to host

independence for a software support system.

The S4 system has produced the software development support

required for a versatile spaceborne computer such as the SUMC. S4

allows the utilization of ground-based computers for generation and

testing of operational flight software.

Future S4 expansion will include the addition of Processors. Those

presently in the design stage are a FORTRAN Flow Charter, a Structured

FORTRAN Program Translator, and a Systems Verification Language

Compiler.
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